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The idea of what is called the basis set polarization method is reviewed and the available po-
larized basis sets are surveyed. Following the basis set polarization approach and certain em-
pirical rules developed earlier, the first-order polarized basis sets for the Group IIIA elements
are generated. These basis sets have been developed for both nonrelativistic and spin-
averaged Douglas–Kroll relativistic calculations. Their performance is tested in calculations
of atomic dipole polarizabilities and in high-level-correlated calculations of the dipole mo-
ments of GaF, InF, and TlF. The relativistic effects have been found to significantly affect
the calculated molecular dipole moments of the studied fluorides. The results are in satisfac-
tory agreement with reference data. The present study completes the library of the first-
order polarized basis sets for all atoms of the main groups of the Periodic Table.
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At present, most of computational quantum chemistry is formulated in
terms of the algebraic approximation with all operators substituted by their
matrix representations in some finite-dimensional set of what is called the
basis functions1–3. The choice of either one-electron or many-electron basis
set functions, i.e., the choice of the computationally affordable and simul-
taneously accurate matrix representation of operators pertinent to the
given problem is one of the main issues of computational quantum chemis-
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try2. This choice is usually made at the level of the one-electron approxima-
tion and to a large extent determines the outcome of calculations.

The accuracy of the finite-dimensional algebraic approximation is
strongly affected by the analytic features (shape) of functions used to build
the one-electron basis set. Nowadays computational quantum chemistry is
almost exclusively based on the use of Gaussian functions4 whose analytic
features are far from being the most suitable ones for the representation of
atomic and molecular wave functions5. This is compensated by two factors.
First, Gaussians are known to form a complete set5 and one may expect that
large enough Gaussian basis sets should be able to cope with the so-called
cusp problem at the nucleus and simultaneously would give accurate
enough form of the wave function in regions far away from the nuclei. Sec-
ond and presumably more important is the easiness of the calculation of
matrix elements of one- and two-electron operators4,6.

The completeness of Gaussians is, however, not very helpful in applica-
tions since the Gaussian expansions exhibit relatively slow convergence5.
In spite of the easiness with which the integrals required in molecular cal-
culations can be computed, the length of the Gaussian expansion, i.e. the
size of the Gaussian basis set required for the assumed level of accuracy,
shortly becomes forbidding. A compromise is reached by the optimization
of parameters (orbital exponents) which define the primitive basis set func-
tions.

The optimization of the selected finite-dimensional basis set is usually
based on the variational minimum energy criterion7–9 and leads to energy-
optimized basis sets. This can be accomplished either at the level of the
Hartree–Fock (HF)1–3 or post-HF 10,11 methods. The past decade has wit-
nessed important developments11–16 in this area with the roots in earlier pa-
pers by Jankowski et al.17,18, Ruedenberg et al.19–21, and Almlöf and Taylor10.

In this context, particularly useful are the systematic procedures for the
generation of Gaussian basis sets of increasing size and flexibility devised
by Dunning11. Moreover, the systematically extended correlation-consis-
tent basis sets of Dunning et al.11–16 offer the possibility of the extra-
polation of the calculated energies to the complete basis set (CBS) limit.
The obvious price one pays is the very large basis set size which makes the
correlation-consistent basis sets of limited use in routine molecular applica-
tions. There are also some additional aspects of this problem which make it
worthwhile to develop smaller basis sets for specific calculations of accept-
able accuracy.

The energy-oriented optimization of the given finite dimensional set of
(Gaussian) basis functions stresses the importance of the matrix representa-
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tion of those operators which enter the mean energy expression. The basis
sets determined in such a way may not be the best ones to use for repre-
senting the operators which are related to other than energy properties of
the system. Obviously, with large and flexible enough set of functions, all
operators of interest may be given sufficiently accurate matrix representa-
tion. However, this soon makes the dimensionality of the algebraic prob-
lem and/or the timing of calculations going beyond the commonly
available resources and acceptable times of execution. Particularly difficult
is the calculation of molecular electric properties15 and their notoriously
slow convergence to the CBS limit is well illustrated by the recent data of
Kobus et al.22 On the other hand, atomic and molecular electric properties
are the most useful data with a variety of applications23,24 and methods for
their routine and reliable calculation are certainly needed.

Although we fully recognize and appreciate the importance of all meth-
ods which give or may give the most accurate, benchmarking data for
atomic and molecular properties15,22, the approach followed in this paper is
based on the philosophy which anticipates certain sacrifices. What is sacri-
ficed is the goal of achieving the highest accuracy of the calculated data;
the estimated accuracy of a few per cent for molecular (low-order) multi-
pole moments and polarizabilities is considered to be satisfactory. Some gains
are expected, however, and among them one should list the computat-
ionally acceptable dimensionality of the algebraic problem and the possibil-
ity of handling large, chemically interesting, molecules. This was the main
idea underlying the development of specifically tailored basis sets for the
use in high-level-correlated calculations of molecular dipole moments and
dipole polarizabilities25. By the method of their generation26–28, these electric-
property-oriented basis sets are referred to as the polarized basis sets (PolX,
where X stands for the symbol of the element).

It is particularly pleasing that the first paper on the generation of PolX
basis sets was also published in this journal25 and on the occasion at least as
remarkable as the present one29. Since then the PolX basis sets have been
generated for most of the main group atoms30–36 as well as for elements of
Groups IB and IIB 37,38 and rare gas atoms39. Due to their relatively small size
and remarkable efficiency in calculations of molecular dipole moments,
dipole polarizabilities, and related electric properties40, the PolX sets have
gained over the years certain recognition among computational chemists.

A new generation of PolX basis sets which offers a more compact treat-
ment of contractions has been more recently reported by Pluta and one of
the present authors39 and is available through anonymous ftp 41 and on the
web 42. In calculations of molecular energies, dipole moments, and dipole
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polarizabilities, the new PolX sets give essentially the same results as the
earlier ones. However, their structure is better adapted to the requirements
of the integral code Seward of the MOLCAS system of quantum chemistry
programs43. One should add that extensions39 of PolX bases to the so-called
HyPolX sets for calculations of molecular hyperpolarizabilities are also
available41,42,44.

The early PolX basis sets have been developed under the assumption of
the nonrelativistic hamiltonian. For heavy elements the relativistic effects
could have been accounted for perturbationally35–38 by using the Pauli ap-
proximation45,46. With the increasing interest in relativistic methods going
beyond the Pauli approximation, the polarized basis sets have been devel-
oped47,48 also for calculations within the Douglas–Kroll (DK) method49–52.
These basis sets are labeled as PolX_dk and differ from their nonrelativistic
counterparts by contraction coefficients. The “relativistic” PolX_dk basis
sets are available for all first- and second-row atoms, for atoms of Groups IB
and IIB 47, for alkali and alkaline-earth metal atoms48 and can be accessed
either by anonymous ftp 53 or on the web 54. Several other unpublished44,55

PolX_dk basis sets are available there as well56.
Upon scanning the list of the available PolX and PolX_dk basis sets and

their HyPolX counterparts, one can easily note that for the Group IIIA at-
oms, these basis sets are so far (and only recently) determined solely for bo-
ron and aluminium39. The absence of the corresponding basis set data for
Ga, In, and Tl as well as the long-lasting absence of PolX bases for B and Al
reflects certain problems which occur in their generation. These problems
follow from particular features of the electronic structure of the Group IIIA
elements; the generation of polarization functions needs to take into ac-
count also the next-to-valence shell whose contribution to atomic polariza-
bilities is not that small as in the case of the Group IVA through Group
VIIIA elements. This to some extent resembles the problems encountered in
the generation of PolX 31,34,36 and PolX_dk 48 basis sets for alkali and alka-
line-earth metal atoms.

In the case of the Group IIIA elements, one needs to generate polariza-
tion functions for the valence s and p shells and the p (or d) subvalence
shell while simultaneously keeping the total basis set size acceptably small.
This is to be accompanied by the requirement that basis sets for the Group
IIIA elements should have similar structure and flexibility as the PolX sets
in the same row of the Periodic Table. Otherwise some artificial “over-
polarization” of bonds may occur. These problems appear to have found
satisfactory solutions in the present study and the resulting PolX and
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PolX_dk sets become now available for all elements of the main groups of
the Periodic Table.

We will review the method used to generate polarized basis sets with par-
ticular attention given to the above-mentioned problems which occur for
the Group IIIA elements. The derivation of the PolX basis sets for non-
relativistic calculations and PolX_dk sets (X = B, Al, Ga, In, Tl) for the use in
DK relativistic studies will be presented and followed by testing their accu-
racy in calculations of atomic dipole polarizabilities. High-level-correlated
nonrelativistic and relativistic studies of molecular dipole moments and
some other electric properties of the Group IIIA fluorides will also be pre-
sented.

THE DEVELOPMENT OF POLARIZED BASIS SETS. SURVEY OF THE METHOD

The principles of the method used to generate polarized basis sets are
rooted in the concept of the dependence of basis functions on the perturba-
tion applied to the system. Particular cases of this idea, although not
phrased explicitly, are as old as quantum chemistry. The earliest example
goes back to Heitler and London57, whose calculations of the potential en-
ergy curve of H2 profited from the use of the nucleus-centered basis func-
tions; the set of two hydrogenic 1s orbitals was allowed to “float” with the
change of the internuclear distance expressing in that way the basis set de-
pendence on molecular geometry. Later on, this idea was generalized by
Gerratt and Mills58, Thomsen and Swanstrøm59, and developed by Pulay60

into powerful tools of what is known as the gradient techniques for the op-
timization of molecular geometries61–63.

In the case of perturbations by magnetic field, the explicit basis set de-
pendence on the magnetic field strength was introduced by London64 in
the form of phase factors and contributed to the development of what is
known as the gauge invariant atomic basis sets (GIAO)65 and perturbation
techniques based on their use66.

The early attempts to introduce explicitly the electric-field dependence
into one-electron basis functions were limited to their multiplicative
forms67–69. A simple exponential form of the electric-field dependence of
atomic orbitals was proposed by Moccia70 and then extended by Hudis and
Ditchfield71. In both cases the field-dependent exponential factor70,71

makes the resulting electric-field-dependent orbitals not L2-integrable.
Thus, they can be used only in explicitly expanded form.

The electric-field dependence of the basis set functions based on the solu-
tion of the harmonic oscillator in external electric field was introduced by
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one of the present authors26,27 and later on has led to the development of
polarized basis sets25,30. The main idea was to exploit the known electric-
field dependence of solutions of the harmonic oscillator in external electric
field F and the close relation between these solutions and commonly used
Gaussian basis sets. In the case of a cartesian Gaussian function whose ori-
gin in the absence of an external electric field (F = 0) is at A(0),

χ(r, A(0)) = f(r – A(0)) exp [–α(r – A(0))2] , (1)

where α is the orbital exponent, the dependence on the homogeneous
static external electric field can be expressed in terms of the field-
dependent origin shift, i.e.,

A(0) → A(F) = A(0) –
1

2α
βF , (2)

where β is a scale factor whose value for the isotropic harmonic oscillator is
equal to 0.25.

In the case of atomic or molecular calculations with electric-field-
dependent Gaussian basis sets,

{χµ(r, A(F), β)} , (3)

the value of β can be optimized with respect to the second-order perturbed
energy26,27,72–74. This was the method used in early applications of electric-
field-variant (EFV) basis sets (3). For initial (field-independent) Gaussian ba-
sis sets of double-zeta or similar quality, the optimized values of β were
found to be close to 0.1 and they did not significantly depend on the stud-
ied system.

The need for analytic determination of integral derivatives75 and the op-
timization of the scale factor have turned our attention to other ways of
benefiting from the analytic electric-field-dependence of Gaussian basis sets
(3) which would permit the use of routine methods of perturbation theory.

The field dependence of the basis (3) shows how the given initial set (1)
should be modified in the presence of the external electric field perturba-
tion. This effect can be analysed in terms of the Taylor expansion of each
field-dependent basis function. Let the primitive nucleus-centered Gaussian
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function χ µ
( )l (r, A(F), β) correspond to some value l of the angular momen-

tum function. Then, its Taylor series expansion with respect to the Fσ com-
ponent of the electric field strength F has the following form:

χ µ
( )l (r, A(F), β) = χ µ

( )l (r, A(0)) +
1

1 p
F p l p

p !
( ) ( , )β χσ µ

=

∞

∑ (r, A(0)) , (4)

where the derivative functions χ µ
( , )l p (r, A(0)) ,

χ µ
( , )l p (r, A(0)) =

1
β

∂ χ β

∂
µ

σ
p

p l

pF

( ) ( , ( ), )r A F

F 0











=

(5)

are independent of the parameter β.
Let us note that through some n-th order with respect to Fσ, the addition

of functions

χ µ
( , )l 1 (r, A(0)), χ µ

( , )l 2 (r, A(0)), ..., χ µ
( , )l n (r, A(0)) (6)

to the initial field-independent basis set will be essentially equivalent to the
use of explicitly field-dependent functions (3). Thus, the derivative func-
tions (5) can be recognized as the polarization functions of the order p.

The unlimited process of adding derivative functions (5) through some
selected value of p = n would obviously give “polarized” basis sets of prohib-
itively large size. Some limitation of the basis size increase can be achieved
by referring to general features of the initial field-independent basis sets
commonly used in molecular calculations76.

First, let us note that for the given value of l the p-th order polarization
function corresponding to χ µ

( )l (r, A(0)) will comprise Gaussian functions with
the angular momentum quantum numbers in the range |l – p|, |l – p + 2|
through l + p. If the generation of polarization functions is carried out sys-
tematically for p = 1, 2, ..., n then in the first step one obtains6

χ µ
( , )l 1 (r, A(0))

1
β

∂χ β

∂
µ

σ

l

F

( , ( ), )r A F

F 0











=

=

= α χµ µ
− −1 2 1/ l (r, A(0))δl,0 + α χµ µ

− +1 2 1/ l (r, A(0)) , (7)

Collect. Czech. Chem. Commun. (Vol. 68) (2003)

Calculations of Molecular Electric Properties 217



where χ µ
l−1 and χ µ

l+1 denote normalized field-independent primitive Gaussians
of the angular momentum l – 1 and l + 1, respectively.

With the usual structure of Gaussian basis sets one may expect that suit-
able GTOs for the angular quantum number equal to l – 1 already exist in
the initial set. Thus, it should be sufficient to supplement the initial set
only with the χ µ

l+1 component of χ µ
( , )l 1 . Similarly, for higher-order derivative

functions χ µ
( , )l p , p = 2, 3, ..., n, the additional polarization functions will cor-

respond to the highest value of the angular momentum quantum number,
i.e. l + p. The primitive Gaussians for |l – p|, |l – p + 2|, ..., |l + p – 2| are either
covered by the initial set or were generated for lower values of p. This will
certainly limit the size of the resulting p-th order polarized set of uncon-
tracted Gaussian functions. Additional reduction can be achieved by apply-
ing the basis set “polarization” process at the level of atomic orbitals
(eigenvectors) determined in Gaussian basis sets28.

One should recognize that the method of the generation of polarization
functions from the assumed electric-field dependence of the primitive
Gaussian basis can be directly applied to any linear combination of Gaussi-
an functions and in particular to atomic eigenvectors. The latter can be rec-
ognized as a particular case of the so-called contracted Gaussian orbitals
(CGTOs). With the restriction that only the polarization functions with in-
creased value of the angular momentum quantum number are saved, such
method will produce a set of compact polarization functions. This method
can be applied to any set of atomic eigenvectors, e.g. occupied atomic SCF
HF, MC SCF, or approximate natural orbitals77,78. For the sake of clarity we
shall limit our considerations to the set of atomic SCF HF eigenvectors which
are sufficient to build the ground-state Slater determinant(s) for the given
atom.

With the field-dependent basis set (3), the atomic one-electron eigen-
vector u k

l (r, A(F), β) for the angular momentum quantum number l, can be
written in the form

u k
l (r, A(F), β) = c k

l
µ µ

µ

χ∑ (r, A(F), β) . (8)

In general the expansion coefficients cµk will depend on the external field.
However, under the assumption that most of the electric-field dependence
is accounted for by the basis set functions (3), one can consider these coeffi-
cients as approximately independent of the external electric field
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strength79. Then, upon expanding (8) into the Taylor series with respect to
the σ component of the electric field strength, Fσ:

u k
l (r, A(F), β) = u k

l (r, A(0)) + F
u

F
k
l

σ
σ

∂ β
∂

( , ( ), )r A F

F 0











=

+

+








 +

=

1
2

2
2

2
F

u

F
k
l

σ
σ

∂ β
∂

( , ( ), )
... ,

r A F

F 0

(9)

one recognizes that for each value of p = 1, 2, ... the derivative terms

1
β

∂ β
∂ σ

p

p
k
l

p

u

F

( , ( ), )r A F

F 0









 =

=

u k
l p( , ) (r, A(0)) (10)

can be considered as new (contracted) functions which need to be added to
the initial basis set of atomic orbitals.

The β-independent functions u k
l p( , ) defined by Eq. (10) arise from the

field-induced polarization effect on the initial basis set of atomic one-
electron eigenvectors and can be referred to as the general p-th-order con-
tracted polarization functions. Within this approach the β parameter does
not affect the shape of polarization functions and does not need to be spec-
ified. If the extension of the initial set of eigenvectors (8) were carried out
systematically, the resulting extended set would in general comprise the
original field-independent CGTOs and all their derivatives (10) through cer-
tain order n with respect to the external electric field.

Under the assumption of field-independent contraction coefficients, the
polarization CGTOs can be expressed in terms of the appropriate deriva-
tives of primitive functions (3):

u k
l p( , ) (r, A(0)) ≈ 1

β
∂ β

∂µ
µ σ

p k

p
k
l

p
c

u

F
∑











=

( , ( ), )
.

r A F

F 0

(11)

If the primitive Gaussian functions in (11) correspond to some value l of
the angular momentum quantum number, then their p-th-order derivative
will be expressed in terms of primitive Gaussians with the angular momen-
tum quantum number ranging from |l – p| through l + p. However, it has
been already pointed out that primitive Gaussians with angular momentum
quantum number lower than l + p are either present in the original basis set
or were generated in earlier steps of the systematic generation of the
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lower-order polarization functions. Hence, the derivative in Eq. (11) can be
approximately substituted by a normalized Gaussian function χ µ

l p+ (r, A(0))
which corresponds to the angular momentum quantum number l + p:

1
β

∂ χ β

∂
µ

σ
p

p l

pF

( , ( ), )r A F

F 0









 ≈

=

α χµ µ
− +p l p/2 (r, A(0)) . (12)

Within this approximation the p-th-order polarization CGTO of Eq. (11) as-
sumes the following form:

u k
l p( , ) (r, A(0)) ≈ c k

p l p
µ µ µ

µ

α χ− +∑ /2 (r, A(0)) = vk
l p( , ) (r, A(0)) , (13)

where the factors α µ
− p /2 appear owing to the renormalization of derivatives

of the primitive Gaussian functions.
According to the method described so far, the p-th-order polarized set

generated from occupied HF SCF orbitals u k
l , k = 1, 2, ..., n would comprise

(p + 1) × n CGTOs, i.e.,

u k
l( ) (r, A(0)), vk

l( , )1 (r, A(0)), ..., vk
l p( , ) (r, A(0)) . (14)

To further reduce the dimensionality of this p-th-order polarized basis set
we will introduce additional approximations whose meaning and validity
are supported either by the character of the perturbation operator or by the
structure of commonly employed Gaussian basis sets.

First, one needs to recognize that the overwhelming contribution to po-
larization effects comes from the valence atomic shells. In some particular
cases also the polarization contribution due to next-to-valence shell may be
of importance. Hence, in general one needs polarization functions only for
a few outer orbitals.

Second, let us note that for the valence shell with certain value l of the
angular momentum quantum number, the initial Gaussian basis set already
contains functions corresponding to all lower values of this quantum num-
ber. Hence, one can assume that the only functions which significantly
contribute to the polarization set are those with the angular momentum
quantum number higher than the given l.

Depending on particular features of the electronic structure of the given
atom, one may need to use the polarization approach also for next-to-
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valence shells. This happens, e.g., in the case of transition metal elements
with exposed next-to-valence d shells which bring a considerable contribu-
tion to the overall polarization effect37,38.

It is worthwhile to note that the contraction coefficients (13) in polariza-
tion functions will be reduced for orbital exponents αµ > 1 and will increase
for αµ < 1. This follows nicely the physical picture of the field-induced po-
larization of the electron density and shows that Gaussian functions with
very high exponents can be simply neglected in the expansion (10). This
observation has led25,30 to certain empirical rules concerning the reduction
of the length of the expansion (13).

It is obvious that the success of the method described in this section will
also depend on the character of the initial GTO/CGTO set. This initial set
must satisfy certain general conditions, appropriate for calculations of
atomic dipole polarizabilities and hyperpolarizabilities. One of the impor-
tant features of the initial Gaussian basis set is that it must be sufficiently
diffuse to permit a good description of outer (most polarizable) regions of
the electron density distribution. For this reason it is usually worthwhile (if
not necessary) to extend standard Gaussian basis sets (e.g. of double-zeta
quality) by diffuse functions. Such an extension is needed already for the
generation of the first-order polarized sets (p = 1) for calculations of dipole
moments and dipole polarizabilities25,30 and becomes indispensable in the
case of p > 1, i.e. for the generation of basis sets for calculations of dipole
hyperpolarizabilities39,44,80.

The extension of the initial Gaussian set by diffuse functions is not neces-
sarily highly exposed in the form of atomic valence orbitals; the corre-
sponding expansion coefficients are usually very small and may remain
small in contracted polarization functions. The early numerical experi-
ments25 have shown that to increase the importance of functions with rela-
tively low exponents, one should use atomic eigenvectors obtained in
calculations for negative atomic ions. This procedure was devised in the
early studies on the generation of polarized basis sets and afterwards sys-
tematically used to generate these sets for elements of Groups IVA through
VIIA.

It is rather obvious that generating a single contracted polarization func-
tion for the given atomic valence orbital may not provide enough flexibil-
ity of the polarized basis set. Moreover, in calculations at the correlated
levels of approximation, the higher angular momentum functions are also
needed to account for the electron correlation contribution to the calcu-
lated properties. From this point of view, splitting the given polarization
function into the high- and low-exponent parts is quite profitable. Numeri-
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cal experiments based on earlier studies by Meyer et al.81–83 have shown
that in the case of the first-order polarization functions this splitting signif-
icantly improves the calculated values of atomic and molecular electric
properties at both SCF HF and correlated levels of approximation.

One should not hesitate to openly say that quite a part of the develop-
ment of polarized basis sets is based on numerical experiments. The deriva-
tion of polarized basis sets for different elements may differ in some details
related to certain particular features of the electronic structure of the given
atom. The main idea is to obtain from the chosen initial set a contracted
“polarized” basis set (target set) of certain assumed size and form. These fea-
tures are determined pragmatically by requesting some balance between
gains (moderately large size of the basis set) and sacrifices (accuracy of the
calculated properties). Usually errors in the calculated molecular electric
property data of the order of a few per cent are considered to be acceptable.
This can be achieved with reasonably small size of the polarized basis sets
which permit calculations for quite sizable molecules84.

In this context one should also stress that the polarized basis sets are de-
veloped primarily for molecular calculations. The method of their genera-
tion is essentially the same for all elements and for this reason the polarized
basis sets provide a highly uniform description of the intramolecular polar-
ization of the electron density distribution. However, if used for isolated at-
oms or atomic ions, the same polarized basis sets may not be particularly
successful and their further extension or adaptation may be needed85.

Initially, the polarized basis sets derived according to the procedure out-
lined in this section have been devised for nonrelativistic calculations of
molecular electric dipole moments and dipole polarizabilities. For heavy
systems the same “nonrelativistic” basis sets have been used to estimate rel-
ativistic contributions to electric properties in the framework of the pertur-
bation scheme45,46 based on the Pauli hamiltonian86. This approach gives
the first-order relativistic correction to electric properties45,46 and does not
need any modification of “nonrelativistic” PolX sets; the relativistic correc-
tion to electric properties is totally expressed in terms of nonrelativistic
wave functions. Although this first-order method has been found to per-
form surprisingly well for properties determined primarily by the electronic
valence shells85,87,88, the higher-order relativistic approaches may obviously
be needed for other properties89. These in turn require relativistic correc-
tions to the wave function whose determination cannot be carried out with
basis sets which were strongly contracted at the level of the nonrelativistic
approximation47,87. For this reason polarized basis sets have been also de-
veloped47,48 for one- and two-component relativistic calculations in the
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framework of the Douglas–Kroll approximation49,51. Similar “relativistic”
basis sets will be presented in this paper for the Group IIIA elements.

GENERATION OF THE FIRST-ORDER POLARIZED BASIS SETS
FOR THE GROUP IIIA ELEMENTS

It has already been mentioned that the generation of the first-order polar-
ized basis sets for the Group IIIA elements needs to account for the polar-
ization of both the valence and next-to-valence shells. For B(2P) the
polarization functions for the 1s2 shell are automatically supplied by the p
subset of the initial atomic basis set. Also, no particular difficulties occur in
the case of Al(2P) since the d polarization set generated according to the
usual rules30 covers the range of the GTO exponents which are important
for the subvalence 2p orbital. However, in the case of Ga(2P), In(2P), and
Tl(2P), one needs to take into account the polarization of the valence ns and
np orbitals as well as the polarization of the subvalence (n – 1)d10 shell.
Thus, the description of the first-order polarized basis set generation will be
given separately for B and Al and for the other three elements.

First-Order Polarized Basis Sets for B and Al

The first-order polarized basis sets for boron and aluminium have been de-
rived earlier39. However, for the sake of completeness of this report we will
briefly repeat the description of their generation. Moreover, the earlier
study of the flexibility of these basis sets was limited to the level of the SCF
HF approximation. In the present paper these results will be supplemented
by the results of atomic CCSD(T) calculations with restricted open-shell
(ROHF) reference functions.

The initial basis set for boron is the energy-optimized (9.5) set of van
Duijneveldt8. In the first step this basis set was contracted to [9.5/4.2]
CGTO set by using 1s, 2s, and 2p SCF ROHF eigenvectors. The contraction
in the s subset covers 7 s-type functions with the highest orbital exponents.
In the p subset the length of the contraction is limited to 4 p-type func-
tions. In the second step of the basis set generation, the s and p subsets are
extended by one diffuse GTO each. The orbital exponents are generated
from the assumed geometric progression of orbital exponents in the initial
set. The resulting [10.6/5.3] basis set is then used to obtain the SCF ROHF
eigenvectors for B–(3P).

According to a series of numerical experiments carried out earlier25, the
d-type first-order polarization set can be built from 4 d-type GTOs with or-
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bital exponents corresponding to the four lowest exponents in the p subset.
This follows immediately from the discussion presented earlier in this pa-
per. Using d-type functions with higher exponents would lead to negligibly
small contraction coefficients because of the α–1/2 scaling in Eq. (13). The
single d-type polarization function which would follow from Eq. (13) does
not have sufficient flexibility to account for both the polarization and elec-
tron correlation effects25. This observation combined with conclusions of
the earlier studies by Meyer et al.81–83 has led to the partition of the single
polarization functions into two polarization CGTOs. The first of them com-
prises the two highest-exponent GTOs, the other one is built of the two
lowest-exponent GTOs. This recipe was systematically used to generate
first-order polarized basis sets for elements of Groups IVA through
VIIA25,30,32,33,35. In the present case it results in the first-order polarized ba-
sis set of B(2P) of the form [10.6.4/5.3.2]. The basis set details can be read
from the PolX basis set library41,42.

The first-order polarized basis set for relativistic Douglas–Kroll calcula-
tions is available as well53,54. It differs from the one used in nonrelativistic
calculations only by the values of contraction coefficients. These follow
from SCF ROHF one-component relativistic calculations with the Douglas–
Kroll hamiltonian47,48,87. Although the relativistic effects in boron are es-
sentially negligible, for the sake of consistency the use of this basis set is
recommended in Douglas–Kroll calculations on molecules containing bo-
ron and heavy elements90.

For Al(2P) the initial basis set is the energy optimized (12.9) GTO basis set
of Huzinaga91. The generation of the first-order polarized basis set39 follows
the method used for elements of the main Groups IVA–VIIA. The contrac-
tion of the initial set to [12.9/6.4] CGTO set was based on 1s, 2s, and 2p
SCF ROHF eigenvectors calculated in the uncontracted set. This contraction
covers eight highest-exponent GTOs in the s subset and six highest-
exponent GTOs in the p subset, leaving the low-exponent GTOs fully un-
contracted. It is worthwhile to mention that this way of contracting the ini-
tial set leaves uncontracted also a considerable part of GTOs which are
important for the description of the 2s and 2p subvalence shells. The
[12.9/6.4] is then extended to [13.10/7.5] by the addition of one diffuse s
and one diffuse p functions. The extended basis set is used to obtain SCF
ROHF eigenvectors for Al–(3P) which determine the d-type polarization
functions. The latter are obtained in the same form as for the boron atom,
i.e., they are generated from 4 most diffuse p-type GTOs in the form of two
CGTOs. In the first of these first-order polarization CGTOs, the orbital coef-
ficients entering Eq. (13) are those of the 2p atomic orbital of Al– and refer
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to the fourth and third most diffuse p-type GTO. In the second d-type po-
larization CGTO, the corresponding coefficients are read from the 3p
atomic orbital of Al– and refer to the second and first most diffuse GTO in
the p subset. This way of generating the d-type polarization functions takes
care of the possible contribution from the subvalence shell of aluminium.
Moreover, the first d-type polarization function is also appropriate for the
description of the electron correlation effects in both valence and sub-
valence shells.

The resulting polarized basis set for aluminium is of the form
[13.10.4/7.5.2] and its details are available from the basis set library41,42. Its
“relativistic” counterpart for Douglas–Kroll calculations is accessible in a
similar way53,54 and is recommended for molecules containing aluminium
and heavy elements92.

First-Order Polarized Basis Sets for Ga, In, and Tl

Starting with Ga the subvalence shell of the Group IIIA elements is of the
form (n – 1)d10 and the corresponding first-order polarized basis sets should
account for its polarization. Hence, according to (13), the first-order polar-
ized basis set must also comprise some f-type polarization functions. Since
in the case of Al one of the d-type polarization functions was used mostly
to describe the polarization effect of the subvalence 2p shell, one can as-
sume that in the case of Ga, In, and Tl, this function will be replaced by its
f-type counterpart. The other d-type polarization function will be used to
describe the polarization effect in the np valence shell.

The initial primitive GTO basis sets for Ga and In are energy-optimized sets
of the form (14.11.5) and (18.14.8), respectively, with orbital exponents de-
termined by Huzinaga93,94. The initial GTO set for Tl of the form (19.16.10.5)
has been taken from the data of Gropen9. In the first step of the generation
of the polarized basis sets the initial sets of Ga, In, and Tl have been con-
tracted to [14.11.5/8.6.2], [18.14.8/10.8.4], and [19.16.10.5/12.10.6.2],
respectively. The generalized contraction is used mostly for atomic core
orbitals; the low-exponent GTOs are essentially left uncontracted and per-
mit high flexibility of the valence and next-to-valence shells of each atom.
The contraction coefficients follow from atomic SCF ROHF eigenvectors.
The “relativistic” contractions have been determined from atomic DK SCF
ROHF eigenvectors.

In the second step of the generation of the first-order polarized sets, the
flexibility of the description of the valence and subvalence shells is further
increased by adding one diffuse s, p, and d GTOs. The orbital exponents
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have been obtained from the continuation of the approximate geometric
progression based on two lowest orbital exponents of the initial set. Upon
this extension, the basis sets of Ga, In, and Tl become [15.12.6/9.7.3],
[19.15.9/11.9.5], and [20.17.11.5/13.11.7.2], respectively. These basis sets
have been used in (DK) SCF ROHF calculations for Ga–(3P), In–(3P), and
Tl–(3P). The resulting valence np and subvalence (n – 1)d ROHF orbitals
have been then employed for the determination of polarization CGTOs.

The f-type polarization functions are assumed to be a linear combination
of two GTOs with orbital exponents equal to those of the two most diffuse
GTOs of the d subset. The contraction coefficients are determined from the
(n – 1)d ROHF eigenvectors of the negative ions according to Eq. (13). Simi-
larly, the d-type polarization functions are built as a contraction of two
GTOs with orbital exponents equal to those of the two most diffuse GTOs
of the p subset. The contraction coefficients follow from the ROHF valence
np eigenvectors of the negative ions.

Finally, upon adding the d- and f-type polarization CGTOs, one ob-
tains the first-order polarized basis sets of Ga, In, and Tl of the form
[15.12.8.2/9.7.4.1], [19.15.11.2/11.9.6.1], and [20.17.13.7/13.11.8.3], re-
spectively. All basis set details can be found in the basis set library41,42.
Their “relativistic” counterparts for Douglas–Kroll calculations are also
available53,54. They differ from the polarized basis sets for nonrelativistic
calculations only by contraction coefficients. This difference becomes im-
portant already for Ga and using “nonrelativistic” polarized basis sets in rel-
ativistic DK calculations may lead to erroneous results.

ATOMIC CALCULATIONS: DIPOLE POLARIZABILITIES

The polarized basis sets are primarily designed for the use in calculations of
molecular electric properties. The structure of these basis sets for the Group
IIIA elements closely follows that of the polarized basis sets derived earlier
for other atoms. Thus, when used in molecular calculations, the basis sets
generated in this study are expected to give a well balanced representation
of intramolecular polarization effects. It is obvious that these are not the
basis sets of choice for atomic calculations of high accuracy. Nevertheless,
their performance in calculations of atomic dipole polarizabilities appears
to be of some interest. For this purpose we have carried out SCF ROHF and
ROHF CCSD(T) 95–98 of the dipole polarizability of the Group IIIA atoms.

All atomic polarizability data presented in this paper correspond to finite
field calculations99–101 with the electric field strength equal to 0.001 a.u.
and followed by the finite difference approximation for second derivatives
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of energy. The numerical accuracy of the finite difference approximation
has been checked at the level of the SCF ROHF method against the first de-
rivatives of the induced dipole moments. The differences between the two
sources of the polarizability data are at most of the order of 0.03 a.u. This
can be considered as an estimate of the numerical accuracy of our results
and is well below inaccuracies resulting from other approximations.

In ROHF CCSD(T) calculations, the number of correlated electrons
amounts to 5 for boron (all electrons), 9 for aluminium (frozen 1s2 and 2s2

shells), and 19 for Ga, In, and Tl ((n – 1)p6, (n – 1)d10, ns2, and np1 shells are
correlated). The subvalence (n – 1)s2 shell in Al, Ga, In, and Tl is systemati-
cally kept frozen. The reason is that in relativistic DK calculations, the 4f
orbital energy becomes higher than that of the 5s atomic orbitals. Hence, to
include the correlation contribution due to 5s2 pair, one would have to cor-
relate additionally 14 f-type electrons. This would make the results for Tl to
some extent incompatible with those for other atoms. Let us also add that
the ROHF CCSD(T) method95–98 used in this study involves full spin sym-
metry adaptation.

The nonrelativistic SCF ROHF and ROHF CCSD(T) results for the ML = 0
component of the dipole polarizability of the 2P state of all atoms consid-
ered in this study are presented in Table I. A similar set of the non-
relativistic data for the ML = ±1 component is shown in Table II. In both
these tables the results obtained with first-order polarized basis sets of this
paper are compared with those calculated with the corresponding fully un-
contracted basis sets. This comparison shows that for heavier atoms (Ga, In,
and Tl) there is a systematic increase in the contraction effect at both the
ROHF and correlated levels of approximation. It has been found that this
deterioration of the flexibility of the PolX basis sets is primarily due to the
contraction of the d-type polarization function. Its decontraction into two
primitive GTOs leads to modified first-order polarized basis sets denoted by
PolX* whose size is by 5 functions larger than that of the standard PolX sets
generated in this study. This, however, removes most of discrepancies be-
tween the SCF ROHF results of PolX and fully uncontracted basis sets. Also
the agreement between PolX* and uncontracted basis set results obtained at
the ROHF CCSD(T) level of approximation is significantly improved. The
modified PolX* basis sets are obviously more suitable for atomic calcula-
tions than the standard PolX sets. However, these modified sets will not be
fully compatible with the PolX bases for other elements and may lead to
“overpolarization” effects in molecular calculations.

Analogous results obtained in the relativistic spin-averaged DK approxi-
mation with PolX_dk and the corresponding fully uncontracted GTO basis
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sets are presented in Tables III and IV. The comparison of the atomic
polarizability data calculated with PolX_dk and fully uncontracted GTO ba-
sis sets shows essentially the same pattern as that observed in non-
relativistic calculations. Also the decontraction of the d-type polarization
function, which leads to modified polarized basis sets PolX_dk*, brings
about significant improvement of both SCF ROHF and ROHF CCSD(T) data.
In most cases the performance of the PolX_dk* bases is almost as good as
that of the corresponding fully uncontracted GTO sets. However, their use
in molecular calculations would require that a similar modification is car-
ried out for PolX basis sets for other elements. Otherwise, combining the
modified sets derived for the Group IIIA elements with standard polarized
basis sets available for other atoms may easily lead to the “over-
polarization” effect.

Accurate calculations of electric properties of the isolated atoms should
obviously be carried out with large basis sets determined specifically for the
given purpose. From this point of view the fully uncontracted basis sets
used in our comparative studies appear to satisfy the necessary criteria. It is
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TABLE I
The ML = 0 component of the dipole polarizability of the 2P state of the Group IIIA ele-
ments. Nonrelativistic SCF ROHF and ROHF CCSD(T) finite field calculations with the
first-order polarized basis sets (PolX), the corresponding fully uncontracted basis sets (GTO),
and modified polarized basis sets (PolX*). All data in a.u.

Atom Method

Basis seta

PolX GTO PolX*

B ROHF 26.31 26.78 26.75

CCSD(T) 23.85 23.97 24.54

Al ROHF 80.15 82.20 82.32

CCSD(T) 74.31 73.95 76.25

Ga ROHF 80.59 81.53 81.51

CCSD(T) 72.98 74.91 74.07

In ROHF 99.91 102.22 102.20

CCSD(T) 90.12 94.70 92.71

Tl ROHF 109.76 112.29 112.19

CCSD(T) 101.04 104.65 104.78

a See text for details of the basis set data.
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TABLE II
The ML = ±1 component of the dipole polarizability of the 2P state of the Group IIIA ele-
ments. Nonrelativistic SCF ROHF and ROHF CCSD(T) finite field calculations with the
first-order polarized basis sets (PolX), the corresponding fully uncontracted basis sets (GTO),
and modified polarized basis sets (PolX*). All data in a.u.

Atom Method
Basis seta

PolX GTO PolX*

B ROHF 19.17 19.63 19.59
CCSD(T) 17.90 18.17 18.36

Al ROHF 51.70 53.22 53.22
CCSD(T) 47.36 47.93 48.76

Ga ROHF 46.93 47.69 47.62
CCSD(T) 40.74 42.44 41.54

In ROHF 65.05 66.84 66.72
CCSD(T) 56.07 59.21 57.77

Tl ROHF 72.06 74.25 74.21
CCSD(T) 60.93 64.30 63.18

a See text for details of the basis set data.

TABLE III
The ML = 0 component of the dipole polarizability of the 2P state of the Group IIIA ele-
ments. Relativistic (DK) SCF ROHF and ROHF CCSD(T) finite field calculations with the
first-order polarized basis sets (PolX_dk), the corresponding fully uncontracted basis sets
(GTO), and modified polarized basis sets (PolX_dk*). All data in a.u.

Atom Method
Basis seta

PolX_dk GTO PolX_dk*

B DK ROHF 26.31 26.77 26.58
DK CCSD(T) 23.89 23.98 24.38

Al DK ROHF 80.31 82.54 82.66
DK CCSD(T) 74.49 74.27 76.59

Ga DK ROHF 81.99 83.05 83.03
DK CCSD(T) 74.04 76.02 75.24

In DK ROHF 102.08 105.00 104.96
DK CCSD(T) 91.37 96.20 94.37

Tl DK ROHF 118.22 123.33 123.22
DK CCSD(T) 110.51 114.19 115.23

a See text for details of the basis set data.



worthwhile to recall that their generation involves the extension of the ini-
tial basis sets by some diffuse functions and the addition of primitive polar-
ization functions. The latter are derived according to the basis set
“polarization” scheme reviewed in this paper. Hence, the corresponding re-
sults for atomic polarizabilities presented in Tables I–IV can be considered
as the best data calculated so far.

The present atomic GTO calculations have been carried out mostly for
the purpose of testing the quality of the PolX and Pol_dk basis sets. How-
ever, it appears appropriate to add some general comments on the
calculated atomic polarizability values. First, the electron correlation contri-
bution to both components of the 2P state dipole polarizability of the Group
IIIA elements is found to be negative. The contribution of the static relativ-
istic effects becomes visible already for aluminium and increases with the
increase of the nuclear charge. Interestingly enough, this contribution is
positive for the ML = 0 and negative for the ML = ±1 components. Thus, the
relativistic effects will significantly increase the absolute values of the di-
pole polarizability anisotropy of the heavy atoms. Indeed, the polarizability
anisotropy,
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TABLE IV
The ML = ±1 component of the dipole polarizability of the 2P state of the Group IIIA ele-
ments. Relativistic (DK) SCF ROHF and ROHF CCSD(T) finite field calculations with the
first-order polarized basis sets (PolX_dk), the corresponding fully uncontracted basis sets
(GTO), and modified polarized basis sets (PolX_dk*). All data in a.u.

Atom Method

Basis seta

PolX_dk GTO PolX_dk*

B DK ROHF 19.20 19.62 19.49

DK CCSD(T) 17.94 18.16 18.38

Al DK ROHF 51.46 53.11 53.12

DK CCSD(T) 47.16 47.84 48.68

Ga DK ROHF 45.70 46.53 46.46

DK CCSD(T) 39.63 41.36 40.49

In DK ROHF 59.70 61.81 61.68

DK CCSD(T) 51.68 54.91 53.65

Tl DK ROHF 54.25 57.53 57.47

DK CCSD(T) 47.35 50.48 50.62

a See text for details of the basis set data.



∆α = α(ML = ±1) – α(ML = 0) , (15)

calculated for Tl in the nonrelativistic ROHF CCSD(T) approximation with
fully uncontracted GTO basis set amounts to –40.35 a.u. (see Tables I and
II) whereas the corresponding relativistic DK result is equal to –63.71 a.u.
(see Tables III and IV). The anisotropy data for In are equal to –35.49 and
–41.29 a.u., respectively. The relativistic effect on the anisotropy of the dipole
polarizability of the Group IIIA elements rapidly decreases with the de-
crease of the nuclear charge. Already for Ga this effect amounts to only
–2.19 a.u. and is essentially negligible for aluminium and boron. This pat-
tern of relativistic contributions is accurately reflected by the polarizability
data calculated with PolX and PolX_dk basis sets. This observation gives a
further support towards the possible use of these basis sets in high-level-
correlated calculations of molecular electric properties.

MOLECULAR CALCULATIONS: DIPOLE MOMENTS OF THE GROUP IIIA FLUORIDES

Another test of the performance of the PolX basis sets is carried out by the
calculation of dipole moments of the GaF, InF, and TlF. Very accurate non-
relativistic SCF HF multipole moment data for these molecules have been
recently calculated by Kobus et al.22 by using the finite difference method
for the numerical integration of the HF equations (FD HF)102–104. Their di-
pole moment data will be used as a benchmark for our SCF HF calculations.

All results reported in this section have been calculated at experimental
values of the bond distance as used by Kobus et al.22,105 (GaF: 3.353 a.u.,
InF: 3.752 a.u., TlF: 3.93898 a.u.). In addition to routine SCF HF data, we
have also computed the correlated dipole moments by using the RHF
CCSD(T) method. The CCSD(T) calculations have been carried out by using
the finite field perturbation approach with the external electric field
strength equal to ±0.001 a.u. In all CCSD(T) calculations, we have included
all valence electrons of fluorine, the (n – 1)p6(n – 1)d10 subvalence and the
valence shell of the Group IIIA element. Hence, our CCSD(T) data corre-
spond to correlating 26 electrons of the outer electronic shells. A similar set
of calculations has been carried out in the relativistic spin-averaged DK ap-
proximation with PolX_dk basis sets.

The calculated nonrelativistic dipole moment data and the reference
values are presented in Table V. The relativistic DK results are given in
Table VI. In addition to the results obtained with standard PolX and
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TABLE VI
Relativistic dipole moments of GaF, InF, and TlF calculated with PolX_dk and PolX_dk* basis
sets in DK SCF HF and DK CCSD(T) approximations. All values in a.u.

Molecule Basis set

Method

DK SCF HF DK CCSD(T)a

GaF PolX_dk –0.9289 –0.9338

PolX_dk* –0.9286 –0.9317

InF PolX_dk –1.2650 –1.2800

PolX_dk* –1.2652 –1.2802

TlF PolX_dk –1.7214 –1.6876

PolX_dk* –1.7264 –1.7100

a The experimental values of the dipole moments of GaF, InF, and TlF are –0.96 a.u. 106,
–1.34 a.u. 106, and –1.650 a.u. 107, respectively. The conversion factor from Debyes to atomic
units is 1 D ≈ 0.39343 a.u.

TABLE V
Nonrelativistic dipole moments of GaF, InF, and TlF calculated with PolX and PolX* basis
sets in SCF HF and CCSD(T) approximations. All values in a.u.

Molecule Basis set

Method

SCF HFa CCSD(T)

GaF PolX –0.8841 –0.8988

PolX* –0.8837 –0.8961

InF PolX –1.1348 –1.1811

PolX* –1.1352 –1.1810

TlF PolX –1.2981 –1.3917

PolX* –1.3006 –1.4018

a The benchmark values of the dipole moments of GaF, InF, and TlF from numerical FD HF
calculations are –0.8748 a.u., –1.1233 a.u., and –1.2644 a.u., respectively22. The conversion
factor from Debyes to atomic units is 1 D ≈ 0.39343 a.u.



PolX_dk basis sets, we have carried out the same set of calculations with
modified PolX* and PolX_dk* basis sets.

As compared to the benchmark FD HF dipole moments of Kobus et al.22,
the present SCF HF data are systematically a little too negative. However,
these differences are of the order of 1–2% only and seem to be perfectly ac-
ceptable in calculations with moderately large basis sets. The modified basis
sets (PolX*) of Ga and In lead to essentially the same results as the corre-
sponding PolX sets. However, in the case of TlF, the use of the PolTl* basis
set changes the calculated SCF HF dipole moment in the wrong direction,
increasing the discrepancy with the numerical FD HF value. This could be
considered as a manifestation of the mentioned “overpolarization” effect.
In spite of their better performance in atomic polarizability calculations,
the modified PolX* basis sets are not recommended in studies of molecular
electric properties.

On comparing the nonrelativistic (Table V) and relativistic (Table VI) di-
pole moments of the three molecules, one finds a marked relativistic effect
already in the case of GaF. At the level of the SCF HF approximation, the
relativistic effects increase the polarity of this molecule by about 5%. In
the case of TlF the relativistic effect accounts for almost 25% of the total
DK SCF HF dipole moment. This pattern of the relativistic contribution to
the calculated dipole moments is essentially the same in the case of the
CCSD(T) data.

The most accurate DK CCSD(T) results of this paper can be compared
with the experimental data. For GaF and InF, the experimental values of
Hoeft et al.106 correspond to the v = 0 vibrational level whereas the calcu-
lated values refer to the experimental equilibrium bond distance. Both ex-
perimental values are by 3–4% more negative than the present DK CCSD(T)
data. The equilibrium value of the dipole moment of TlF (–1.650 a.u.) has
been determined by Boeckh et al.107 and is expected to be quite accurate. It
agrees with our DK CCSD(T) value (–1.6876 a.u.) within about 2%. All these
differences are within the error bars expected for molecular electric proper-
ties calculated with PolX and PolX_dk basis sets. Thus, one can conclude
that the first-order polarized basis sets derived in this study for the Group
IIIA atoms match the quality of basis sets generated earlier for other ele-
ments.

As a by-product of our calculations of molecular dipole moments, we
have computed the parallel component of the dipole polarizability of GaF,
InF, and TlF. The corresponding nonrelativistic and relativistic results cal-
culated with PolX basis sets are presented in Table VII. There seem to be no
other data for comparison. One should note that the electron correlation
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contribution to the nonrelativistic parallel dipole polarizability is small and
positive. The relativistic effects lead to a considerable decrease of the SCF
HF polarizability values. The same is observed for the CCSD(T) data. The
importance of relativistic effects on the parallel component of the dipole
polarizability of GaF, InF, and TlF systematically increases with the increase
of the nuclear charge of the heavy atom.

SUMMARY AND CONCLUSIONS

The present study completes the first-order polarized basis sets for elements
of the main groups of the Periodic Table. We have surveyed the basis sets
available so far, indicating problems which occur in the generation of po-
larized basis sets for the Group IIIA elements. The principles of what is
called the basis set polarization method have been reviewed as well and fol-
lowed by certain “empirical” rules which lead to well balanced atomic basis
sets for the use in high-level-correlated calculations of molecular electric
properties. According to these rules, the first-order polarized basis sets have
been generated for Ga, In, and Tl to add to the corresponding basis sets de-
rived earlier for B and Al.

Two levels of testing the basis set performance have been investigated.
The first was their performance in calculations of the atomic dipole
polarizability. The results of calculations with PolX basis sets have been
compared with those obtained in calculations with the corresponding fully
uncontracted GTO sets. One should mention that the polarization func-
tions in these fully uncontracted sets follow from the same ideas as those
used for the derivation of the PolX sets.
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TABLE VII
The parallel component of the dipole polarizability of GaF, InF, and TlF. Results of non-
relativistic and relativistic calculations with PolX basis sets. All values in a.u.

Molecule

Method

SCF HF DK SCF HF CCSD(T) DK CCSD(T)

GaF 32.69 31.95 34.13 33.58

InF 44.73 41.70 46.13 43.84

TlF 49.46 39.52 50.21 43.35



The performance of PolX basis sets in atomic calculations has been found
to be satisfactory and confirmed in calculations of the dipole moment of
GaF, InF, and TlF. However, to be used in calculations for atoms, the PolX
basis sets may need to be modified a little to increase their flexibility in the
description of the valence shell polarization effects.

Parallel to investigations in the framework of the nonrelativistic theory,
we have developed basis sets (PolX_dk) for spin-averaged relativistic calcu-
lations in the DK approximation. These basis sets comprise the same set of
primitive GTOs as the PolX bases. They differ, however, by the choice of
the contraction coefficients. The pattern of relativistic contributions to
electric properties has been studied for atomic dipole polarizabilities and di-
pole moments and polarizabilities of GaF, InF, and TlF.

One should stress that the first-order polarized basis sets are not designed
for the purpose of highly accurate calculations of molecular properties.
These basis sets are of moderate size and one must accept certain sacrifices
with respect to the accuracy of the calculated data. The goal is to obtain the
basic molecular electric properties with the accuracy not worse than a few
per cent with respect to available benchmarks and this goal is achieved in
most calculations. Obviously, one could further extend the standard PolX
and PolX_dk sets to improve upon the computed property data. This would
produce polarized basis sets of very high quality and very limited use. One
should also stress that the polarized basis sets are for molecular rather than
for atomic calculations. Their performance in calculations of atomic electric
properties may not be very satisfactory. The PolX and PolX_dk basis sets are
definitely purpose- (property-) oriented. They are designed for calculations
of basic molecular electric properties and in this particular case they offer
certain advantages. They are moderately sized and lead to relatively small
errors in high-level-correlated values of molecular dipole moments and
polarizabilities.

Finally, one should also remark about the use of polarized basis sets for
the study of weak intermolecular interactions23,108. Since the polarized basis
sets are well saturated for reasonably accurate calculations of molecular di-
pole moments and dipole polarizabilities, one could expect them to per-
form quite well in calculations of intermolecular interaction energies.
Indeed, as concluded by Chałasiński and Szczęśniak108, this is generally the
case. However, one should bear in mind that the polarized basis sets usually
give rather poor monomer energies and the supermolecular approach to the
calculation of the interaction energy may be severely affected by the basis
set superposition error109,110. On the other hand, the usual counterpoise
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correction109 appears to work reasonably well108, most likely owing to small
values of the secondary basis set superposition error111.
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